Cutnell & Johnson: "Physics," Sixth Edition

Chapter 1	Introduction and Mathematical Concepts	
1.1	The Nature of Physics	
1.2	Units Demo 01-01 Basic Units	
1.3	The Role of Units in Problem Solving Demo 18-07 2:1 Scaling	
1.4	Trigonometry	
1.5	Scalars and Vectors	
1.6	Vector Addition and Subtraction Demo 01-02 Vector Addition (Parallelogram Demo 01-03 Vector Addition (Head to Tail)	
1.7	The Components of a Vector Demo 01-04 Vector Components Demo 01-07 3-D Vector Components	
1.8	Addition of Vectors by Means of Components	
1.9	Concepts & Calculations Demo 01-05 Vector Dot Product Demo 01-06 Vector Cross Product	
Chapter 2	Kinematics in One Dimension	
2.1	Displacement	
2.2	Speed and Velocity Demo 02-01 Constant Velocity Demo 02-02 Bulldozer on Moving Sheet	
2.3	Acceleration Demo 02-03 Rolling Ball Incline Demo 02-04 Constant Acceleration	
2.4	Equations of Kinematics for Constant Acceleration	
2.5	Applications of the Equations of Kinematics	
2.6	Freely Falling Bodies Demo 02-05 String and Weights Drop	

Demo 02-06 Reaction Time Falling Meter Stick Demo 02-07 Guinea and Feather

Demo 03-04 Dropped Slinky

Demo 03-05 Candle in Dropped Jar

2.7 **Graphical Analysis of Velocity and Acceleration**

Demo 02-01 Constant Velocity Demo 02-03 Rolling Ball Incline Demo 02-04 Constant Acceleration

2.8 **Concepts & Calculations**

Kinematics in Two Dimensions Chapter 3

- 3.1 Displacement, Velocity, and Acceleration
- 3.2 **Equations of Kinematics in Two Dimensions**
- 3.3 **Projectile Motion**

Demo 04-01 Shooter/Dropper

Demo 04-02 Monkey Gun

Demo 04-03 Vertical Gun on Car

Demo 04-04 Vertical Gun on Accelerated Car

Demo 04-05 Air Table Parabolas

Demo 04-06 Range Gun

3.4 **Relative Velocity**

Demo 02-02 Bulldozer on Moving Sheet Demo 04-08 Bulldozer on Moving Sheet (2D)

3.5 **Concepts & Calculations**

Forces and Newton's Laws of Motion Chapter 4

- 4.1 The Concepts of Force and Mass
- 4.2 **Newton's First Law of Motion**

Demo 05-01 Shifted Air Track Inertia

Demo 05-02 Inertia Ball

Demo 05-03 Foam Rock

Demo 05-04 Tablecloth Jerk

Demo 05-05 Eggs and Pizza Pan

Demo 05-06 Pencil and Plywood

4.3 **Newton's Second Law of Motion**

Demo 03-01 String and Weight Acceleration

Demo 03-02 Atwood's Machine

Demo 03-03 Acceleration with Spring

4.4 The Vector Nature of Newton's Second Law of Motion

Demo 04-09 Sliding Weights with Triangle

Demo 04-10 Sailing Upwind

Demo 04-11 Local Vertical with Acceleration

4.5 Newton's Third Law of Motion

Demo 06-01 Reaction Gliders

Demo 06-02 Reaction Gliders Momentum Conservation

Demo 06-03 Car on Rolling Board

Demo 06-04 Fan Car with Sail

Demo 06-05 CO₂ Rocket

Demo 06-06 Water Rocket

Demo 06-07 Fire Extinguisher Wagon

Demo 06-08 Helicopter Rotor

Demo 06-09 See-Saw Reaction Carts

4.6 Types of Forces: An Overview

4.7 The Gravitational Force

Demo 17-03 Cavendish Balance

Demo 02-05 String and Weights Drop

Demo 02-06 Reaction Time Falling Meter Stick

Demo 02-07 Guinea and Feather

Demo 03-04 Dropped Slinky

Demo 03-05 Candle in Dropped Jar

Demo 17-01 Sections of a Cone

Demo 17-02 Ellipse Drawing Board

4.8 The Normal Force

4.9 Static and Kinetic Frictional Forces

Demo 07-01 Air Track Friction

Demo 07-02 Static vs. Sliding Friction

Demo 07-03 Area Dependence of Friction

Demo 07-04 Weight Dependence of Friction

Demo 07-05 Surface Dependence of Friction

Demo 07-06 Stability of Rolling Car

4.10 The Tension Force

Demo 10-04 Pulley Advantage

Demo 10-05 Pulley and Scales

4.11 Equilibrium Applications of Newton's Laws of Motion

Demo 10-01 Force Board

Demo 10-02 Clothesline

Demo 10-03 Load on Removable Incline

4.12 Nonequilibrium Applications of Newton's Laws of Motion

Demo 04-09 Sliding Weights with Triangle

Demo 04-10 Sailing Upwind

4.13 Concepts & Calculations

	Chapter 5	Dvnamics	of Uniform	Circular	Motion
--	-----------	-----------------	------------	----------	--------

5.1 Uniform Circular Motion

Demo 12-01 Radian Disc Demo 12-02 Cycloid Generator

5.2 Centripetal Acceleration

Demo 12-03 Circle with Gap

Demo 12-04 Rotating Disc with Erasers

Demo 12-05 Spinning Disc with Water

5.3 Centripetal Force

Demo 12-06 Ball on Cord

Demo 12-07 Coin on a Coat Hanger

Demo 12-08 Plane on String

Demo 12-09 Roundup

Demo 12-10 Whirling Bucket of Water

Demo 12-11 Centrifuge Hoops

Demo 12-12 Water and Mercury Centrifuge

Demo 12-13 Spinning Chain

Demo 12-14 Rotating Rubber Wheel

Demo 12-15 Centrifugal Governor

5.4 Banked Curves

5.5 Satellites in Circular Orbits

Demo 17-01 Sections of a Cone Demo 17-02 Ellipse Drawing Board

5.6 Apparent Weightlessness and Artificial Gravity

Demo 04-11 Local Vertical with Acceleration

Demo 12-09 Roundup

Demo 12-10 Whirling Bucket of Water

5.7 Vertical Circular Motion

Demo 13-09 Loop the Loop

5.8 Concepts & Calculations

Chapter 6	Work and Energy	
6.1	Work Done by a Constant Force	
6.2	The Work-Energy Theorem and Kinetic Energy Demo 08-02 Spring Pong Gun Demo 08-03 Spring Jumper Demo 08-04 X-Squared Spring Energy Dependence Demo 08-05 High Bounce Paradox	
6.3	Gravitational Potential Energy Demo 08-01 Pile Driver	
6.4	Conservative vs. Nonconservative Forces	
6.5	The Conservation of Mechanical Energy Demo 08-06 Energy Well Track Demo 08-07 Galileo's Pendulum Demo 08-08 Bowling Ball Pendulum Demo 08-09 Triple Track	
6.6	Nonconservative Forces and the Work-Energy Theorem Demo 08-10 Hand Cranked Generator Demo 08-11 Generator Driven by Falling Weight	
6.7	Power Demo 08-12 Prony Brake	
6.8	Other Forms of Energy and the Conservation of Energy	
6.9	Work Done by a Variable Force	
6.10	Concepts & Calculations	
Chapter 7	Impulse and Momentum	
7.1	The Impulse-Momentum Theorem Demo 11-09 Egg in Sheet Demo 11-10 Pile Driver with Foam Rubber	
7.2	The Principle of Conservation of Linear Momentum Demo 06-01 Reaction Gliders Demo 06-02 Reaction Gliders Momentum Conservation Demo 06-03 Car on Rolling Board	
7.3	Collisions in One Dimension Demo 11-01 Colliding Balls Demo 11-02 Equal and Unequal Mass Collisions Demo 11-03 Elastic and Inelastic Collisions	

Demo 11-04 Coefficient of Restitution Demo 11-11 Ballistic Pendulum Demo 11-05 High Bounce

7.4 Collisions in Two Dimensions

Demo 11-06 Air Table Collisions (Equal Mass) Demo 11-07 Air Table Collisions (Unequal Mass) Demo 11-08 Air Table Collisions (Inelastic)

7.5 Center of Mass

Demo 09-09 Air Table Center of Mass

7.6 Concepts & Calculations

Chapter 8 Rotational Kinematics

8.1 Rotational Motion and Angular Displacement

Demo 12-01 Radian Disc

8.2 Angular Velocity and Angular Acceleration

Demo 13-01 Angular Acceleration Machine Demo 13-02 Bike Wheel Angular Acceleration Demo 13-03 Air Rotator With Deflectors

8.3 The Equations of Rotational Kinematics

8.4 Angular Variables and Tangential Variables

Demo 13-10 Penny Drop Stick Demo 13-11 Hinged Stick and Ball Demo 13-12 Center of Percussion

8.5 Centripetal Acceleration and Tangential Acceleration

Demo 12-03 Circle with Gap Demo 12-04 Rotating Disc with Erasers Demo 12-05 Spinning Disc with Water

8.6 Rolling Motion

Demo 13-04 Rolling Bodies on Incline Demo 13-05 Spool on Incline Demo 13-06 Bike Wheel on Incline Demo 13-07 Spool with Wrapped Ribbon Demo 13-08 Maxwell's Yoyo

8.7 The Vector Nature of Angular Variables

8.8 Concepts & Calculations

Chapter 9 Rotational Dynamics

9.1 The Actions of Forces and Torques on Rigid Objects

Demo 10-06 Simple Machines

Demo 10-07 Levers

Demo 10-08 Horizontal Boom

Demo 10-09 Arm Model

Demo 10-10 Torque Bar

Demo 10-11 Hinge Board

Demo 10-12 Torque Wrench

9.2 Rigid Objects in Equilibrium

Demo 10-13 Torque Wheel

Demo 10-14 Balancing Meter Stick

Demo 10-15 Meter Stick on Fingers

Demo 10-16 Bridge and Truck

Demo 10-17 Roberval Balance

Demo 10-18 Ladder Forces

Demo 10-19 Broom Stand

Demo 10-20 Bed of Nails

Demo 10-21 Egg Crusher

9.3 Center of Gravity

Demo 09-01 Stability

Demo 09-02 Irregular Object Center of Mass

Demo 09-03 Center of Mass Disc

Demo 09-04 Chair on Pedestal

Demo 09-05 Clown on Rope

Demo 09-06 Double Cone on Incline

Demo 09-07 Loaded Disc

Demo 09-08 Toppling Cylinders

9.4 Newton's Second Law for Rotational Motion About a Fixed Axis

Demo 13-01 Angular Acceleration Machine

Demo 13-02 Bike Wheel Angular Acceleration

Demo 13-03 Air Rotator With Deflectors

9.5 Rotational Work and Energy

Demo 13-04 Rolling Bodies on Incline

Demo 13-05 Spool on Incline

Demo 13-06 Bike Wheel on Incline

Demo 13-07 Spool with Wrapped Ribbon

Demo 13-08 Maxwell's Yoyo

9.6 Angular Momentum

Demo 14-01 Marbles and Funnel

Demo 14-02 Train on a Circular Track

Demo 14-03 Tail Wags Dog

Demo 14-04 Rotating Stool with Weights

Demo 14-05 Rotating Stool and Long Bar

Demo 14-06 Rotating Stool and Bicycle Wheel

Demo 14-07 Gyroscopic Stability

Demo 14-08 Wheel and Brake

Demo 14-09 Satellite Derotator

Demo 13-13 Foucault Pendulum

Demo 13-14 Coriolis Effect

Demo 15-01 Bike Wheel Precession

Demo 15-02 Gyroscope with Adjustable Weights

Demo 15-03 Bike Wheel on Gimbals

Demo 15-04 Double Bike Wheel

Demo 15-05 Motorized Gyroscope

Demo 16-01 Static/Dynamic Balance

Demo 16-02 Football Spin

Demo 16-03 Tippy Top

Demo 16-0418 Ship Stabilizer

Demo 16-05 Spinning Rod and Hoop on Wire

Demo 16-06 Stable and Unstable Axes of Rotation

9.7 Concepts & Calculations

Chapter 10 Simple Harmonic Motion and Elasticity

10.1 The Ideal Spring and Simple Harmonic Motion

Demo 19-02 Mass on Spring

Demo 19-03 Air Track Simple Harmonic Motion

Demo 19-14 Periodic Non-Simple Harmonic Motion

Demo 19-15 Inertia Balance

10.2 Simple Harmonic Motion and the Reference Circle

Demo 19-01 Tuning Fork with Light

Demo 19-11 Circular Motion vs. Spring and Weight

Demo 19-12 Circular Motion vs. Pendulum

Demo 19-13 Phase Shift

Demo 19-17 Lissajous Figures

10.3 Energy and Simple Harmonic Motion

10.4 The Pendulum

Demo 19-06 4:1 Pendula

Demo 19-05 Different Mass Pendula

Demo 19-04 Torsion Pendulum

Demo 19-07 Hoops and Arcs

Demo 19-08 Pendulum with Large Amplitude

Demo 19-09 Physical Pendulum

Demo 19-10 Variable Angle Pendulum

Demo 19-16 Pendulum Waves

Demo 20-07 Coupled Pendula

Demo 20-08 Wilberforce Pendulum

10.5 Damped Harmonic Motion

10.6 Driven Harmonic Motion and Resonance

Demo 20-01 Bowling Ball Pendulum Resonance

Demo 20-02 Resonant Driven Pendula

Demo 20-03 Driven Spring and Weight

Demo 20-04 Pump Pendulum

Demo 20-05 Reed Tachometer

Demo 20-06 Glass Breaking with Sound

10.7 Elastic Deformation

10.8 Stress, Strain, and Hooke's Law

Demo 18-01 Hooke's Law

Demo 18-02 Spring in Series and Parallel

Demo 18-03 Torsion Rod Demo 18-04 Elastic Limits

Demo 18-05 Young's Modulus

Demo 18-06 Bending Beams

Demo 18-08 Bologna Bottle

Demo 18-09 Elasticity at Low Temperatures

10.9 Concepts & Calculations

Chapter 11 Fluids

11.1 Mass Density

11.2 Pressure

Demo 26-03 Magdeburg Hemispheres

Demo 26-04 Adhesion Plates

Demo 26-05 Crush Can

Demo 26-06 Vacuum Bazooka

Demo 26-07 Barrel Crush

Demo 26-08 Air Pressure Lift

Demo 26-09 Inertia Shingles

Demo 26-10 Rubber Sheet Lifting Chair

11.3 Pressure and Depth in a Static Fluid

Demo 27-01 Same Level Tubes

Demo 27-02 Pressure vs. Depth

Demo 27-03 Pressure vs. Depth in Water and Alcohol

Demo 27-04 Pressure Independent of Direction

Demo 27-05 Water/Air Compression

Demo 27-06 Water and Mercury U-tube

Demo 29-15 Toricelli's Tank

11.4 Pressure Gauges

Demo 26-01 Mercury Barometer in Vacuum

Demo 26-02 Aneroid Barometer in Vacuum

11.5 Pascal's Principle

Demo 27-07 Hydraulic Press Demo 27-08 Hydrostatic Paradox

11.6 Archimedes' Principle

Demo 28-02 Weight of Air

Demo 28-03 Buoyant Force

Demo 28-04 Archimedes' Principle

Demo 28-05 Board and Weights Float

Demo 28-06 Different Density Wood

Demo 28-01 Hydrometer

Demo 28-07 Density Ball

Demo 28-08 Density Balls in Beans

Demo 28-09 Battleship in Bathtub

Demo 28-10 Buoyancy in Various Liquids

Demo 28-11 Floating Square Bar

Demo 28-12 Helium Balloon in Glass Jar

Demo 28-13 Helium Balloon in Liquid Nitrogen

Demo 28-14 Cartesian Diver

11.7 Fluids in Motion

Demo 29-07 Vortex Cannon

Demo 29-09 Tornado Tube

Demo 29-10 Siphon

Demo 29-14 Water Hammer

Demo 29-16 Accelerometers

Demo 29-17 Paraboloid of Revolution

Demo 29-18 Rotating Water Troughs

11.8 The Equation of Continuity

Demo 29-11 Syringe Water Velocity

11.9 Bernoulli's Equation

Demo 29-12 Uniform Pressure Drop

Demo 29-13 Bernoulli's Principle

11.10 Applications of Bernoulli's Equation

Demo 29-01 Pitot Tube

Demo 29-02 Flettner Rotor

Demo 29-03 Curve Balls

Demo 29-04 Floating Ball in Air Jet

Demo 29-05 Suspended Plate in Air Jet

Demo 29-06 Suspended Parallel Cards

Demo 29-15 Toricelli's Tank

11.11 Viscous Flow

Demo 31-01 Air Friction

Demo 31-02 Viscous Drag

Demo 31-03 Ball Drop

Demo 31-04 Gas Viscosity Change with Temperature

Demo 31-05 Viscosity of Alcohol at Low Temperatures

Demo 31-06 Oil Viscosity

Demo 29-08 Un-mixing

11.12 Concepts & Calculations

Also Relevant: Chapter 30 Surface Tension

Demo 30-01 Surface Tension Disc

Demo 30-02 Floating Metal Sheet

Demo 30-03 Soap Film Pull-up

Demo 30-04 Soap Film Shapes

Demo 30-05 Two Soap Bubbles

Demo 30-06 Minimum Energy Thread

Demo 30-07 Capillary Action

Demo 30-08 Capillary Tubes

Chapter 12 Temperature and Heat

12.1 Common Temperature Scales

12.2 The Kelvin Temperature Scale

Demo 36-02 Pressure vs. Temperature

12.3 Thermometers

Demo 32-06 Thermal Expansion of Air Demo 32-07 Thermal Expansion of Water

12.4 Linear Thermal Expansion

Demo 32-05 Thermal Expansion

Demo 32-01 Thermal Expansion of Wire

Demo 32-02 Bimetallic Strip

Demo 32-03 Thermostat Model

Demo 32-04 Pin Breaker

12.5 Volume Thermal Expansion

Demo 32-06 Thermal Expansion of Air

Demo 32-07 Thermal Expansion of Water

Demo 32-08 Negative Expansion Coefficient of Water

12.6 Heat and Internal Energy

12.7 Heat and Temperature Change: Specific Heat Capacity

Demo 32-11 Specific Heat

Demo 32-12 Specific Heat with Rods and Wax

Demo 32-13 Boiling Water in a Paper Cup

Demo 32-14 Water Balloon Heat Capacity

12.8 Heat and Phase Change: Latent Heat

12.9 Equilibrium Between Phases of Matter

Demo 35-01 Liquid Nitrogen in Balloon

Demo 35-02 Boil Water Under Reduced Pressure

Demo 35-03 CO₂ Critical Point

Demo 35-04 Drinking Bird

Demo 35-05 Freezing by Boiling

Demo 35-06 Cryophorus

Demo 35-07 Ice Bomb

Demo 35-08 Regelation

Demo 35-09 Helium and CO₂ Balloons in Liquid Nitrogen

Demo 35-10 Sublimation of CO₂

Demo 35-11 Slime Ball

12.10 Humidity

12.11 Concepts & Calculations

Chapter 13 The Transfer of Heat

13.1 Convection

Demo 33-07 Convection Currents Demo 33-06 Insulation (Dewar Flasks)

13.2 Conduction

Demo 33-01 Thermal Conductivity Demo 33-02 Leidenfrost Phenomenon Demo 33-06 Insulation (Dewar Flasks)

13.3 Radiation

Demo 33-03 Radiometer Demo 33-04 Two Can Radiation Demo 33-05 Radiation Cube Demo 33-06 Insulation (Dewar Flasks)

13.4 Applications

13.5 Concepts & Calculations

Chapter 14 The Ideal Gas Law and Kinetic Theory

14.1 Molecular Mass, the Mole, and Avogadro's Number

14.2 The Ideal Gas Law

Demo 36-01 Pressure vs. Volume Demo 36-02 Pressure vs. Temperature

14.3 Kinetic Theory of Gases

Demo 36-03 Temperature Increase Simulation Demo 36-04 Pressure vs. Volume Simulation Demo 36-05 Equipartition of Energy Simulation

Demo 36-06 Mercury Kinetic Theory

Demo 36-07 Brownian Motion

Demo 36-08 Brownian Motion Simulation

Demo 36-13 Free Expansion Simulation

Demo 36-12 Gaussian Curve

14.4 Diffusion

Demo 36-09 Diffusion

Demo 36-10 Diffusion Simulation

Demo 36-11 Bromine Diffusion

14.5 Concepts & Calculations

Chapter 15 Thermodynamics

- 15.1 Thermodynamic Systems and Their Surroundings
- 15.2 The Zeroth Law of Thermodynamics
- 15.3 The First Law of Thermodynamics

Demo 34-01 Drill and Dowel

Demo 34-02 Mechanical Equivalent of Heat

Demo 34-08 Cork Popper

- 15.4 Thermal Processes
- 15.5 Thermal Processes Using an Ideal Gas

Demo 36-01 Pressure vs. Volume

Demo 36-02 Pressure vs. Temperature

Demo 34-03 CO₂ Expansion Cooling

Demo 34-04 Adiabatic Expansion

Demo 34-05 Fire Syringe

- 15.6 Specific Heat Capacities
- 15.7 The Second Law of Thermodynamics
- 15.8 Heat Engines

Demo 34-06 Stirling Engine

Demo 34-07 Hero's Engine

15.9 Carnot's Principle and the Carnot Engine

Demo 34-06 Stirling Engine

15.10 Refrigerators, Air Conditioners, and Heat Pumps

Demo 38-03 Thermoelectric Heat Pump

15.11 Entropy

15.12 The Third Law of Thermodynamics

15.13 Concepts and Calculations

Chapter 16 Waves and Sound

16.1 The Nature of Waves

Demo 21-01 Wave on Rope Demo 21-04 Torsional Waves

Demo 21-06 Longitudinal Wave Model Demo 21-07 Longitudinal Slinky Waves

Demo 19-16 Pendulum Waves

16.2 Periodic Waves

Demo 21-04 Torsional Waves

16.3 The Speed of a Wave on a String

Demo 21-05 Wave Speed

Demo 21-03 Tension Dependence of Wave Speed

Demo 21-02 Pulse on Moving Chain

Demo 23-01 Guitar and Scope

Demo 23-02 Sonometer

16.4 The Mathematical Description of a Wave

16.5 The Nature of Sound

Demo 21-06 Longitudinal Wave Model

Demo 21-07 Longitudinal Slinky Waves

Demo 24-01 Siren in Vacuum

Demo 24-02 Siren Disc

Demo 24-03 Gear and Card

Demo 24-04 Cutaway Speaker

16.6 The Speed of Sound

Demo 24-05 Sound Velocity at Different Temperatures

Demo 24-06 Sound in Helium

16.7 Sound Intensity

Demo 24-09 Acoustic Coupling

16.8 Decibels

16.9 The Doppler Effect

Demo 24-13 Doppler Effect

16.10 Applications of Sound in Medicine

16.11 The Sensitivity of the Human Ear

16.12 Concepts and Calculations

Chapter 17 The Principle of Linear Superposition and Interference Phenomena

17.1 The Principle of Linear Superposition

Demo 21-08 Wave Superposition

17.2 Constructive and Destructive Interference of Sound Waves

Demo 24-12 Two Speaker Interference

Demo 21-14 Double Slit Interference of Water Waves

Demo 21-15 Moire Pattern

17.3 Diffraction

Demo 21-13 Single Slit Diffraction of Water Waves

17.4 Beats

Demo 24-10 Tuning Fork Beats

Demo 24-11 Beats with Speaker and Oscilloscope

17.5 Transverse Standing Waves

Demo 21-09 Reflection of Waves

Demo 21-10 Spring Wave Reflection

Demo 21-11 Wave Coupling

Demo 24-09 Acoustic Coupling

Demo 22-01 Longitudinal Standing Waves

Demo 22-03 Standing Waves

Demo 22-04 Three Tensions Standing Waves

Demo 22-05 Rubber Tube Standing Waves

Demo 23-01 Guitar and Scope

Demo 23-02 Sonometer

Demo 22-06 Drumhead

Demo 22-07 Chladni Plates

Demo 23-03 Tuning Forks

Demo 23-04 Adjustable Tuning Fork

Demo 23-05 Rectangular Bar Oscillations

Demo 23-07 Xylophone Bars

17.6 Longitudinal Standing Waves

Demo 22-02 Slinky Standing Waves

Demo 25-04 Resonance Tube

Demo 25-05 Open and Closed End Pipes

Demo 25-01 Resonance Tube with Piston

Demo 25-02 Resonance Tubes (Three Lengths)

Demo 25-03 Kundt's Tube

Demo 25-06 Slide Whistle

Demo 25-07 Singing Pipes

Demo 25-08 Tuning Forks on Resonant Boxes

Demo 23-08 Singing Rods

Demo 23-06 High Frequency Metal Bars

Demo 25-09 Helmholtz Resonators

17.7 Complex Sound Waves

Demo 24-07 Fourier Synthesizer Demo 24-08 Vocal Formants

17.8 Concepts & Calculations

Chapter 18 Electric Forces and Electric Fields

18.1 The Origin of Electricity

18.2 Charged Objects and the Electric Force

Demo 39-01 Electrostatic Rods
Demo 39-02 Electrostatic Rod and Cloth
Demo 39-03 Electrostatic Ping-Pong Deflection
Demo 39-04 Electrostatic Ping-Pong Balls

18.3 Conductors and Insulators

Demo 39-05 Conductors and Insulators

18.4 Charging by Contact and by Induction

Demo 39-04 Electrostatic Ping-Pong Balls Chapter 40 Electrostatic Induction Demo 40-01 Electrostatic Induction Demo 40-02 Metal Rod Attraction Demo 40-03 Electrophorus Demo 40-04 Induction Generator Demo 40-05 Kelvin Water Dropper Demo 40-06 Wooden Needle

18.5 Coulomb's Law

18.6 The Electric Field

18.7 Electric Field Lines

Demo 41-04 Electric Field Demo 41-02 Van de Graaff with Streamers

18.8 The Electric Field Inside a Conductor: Shielding

Demo 41-08 Faraday Cage Demo 41-09 Faraday Ice Pail Demo 56-11 Radio in Faraday Cage

18.9 Gauss' Law

18.10 Copiers and Computer Printers

18.11 Concepts & Calculations

Chapter 19 Electric Potential Energy and the Electric Potential

19.1 Potential Energy

Demo 46-06 Exploding Capacitor

19.2 The Electric Potential Difference

Demo 41-01 Van de Graaff Generator Demo 41-03 Van de Graaff and Wand

19.3 The Electric Potential Difference Created by Point Charges

Demo 41-05 Lightning Rod

Demo 41-06 Pinwheel

Demo 41-07 Point and Candle

Demo 41-10 Smoke Precipitation

Demo 41-11 Electron Discharge Tube with Wheel

19.4 Equipotential Surfaces and Their Relation to the Electric Field

19.5 Capacitors and Dielectrics

Demo 46-01 Leyden Jars on Toepler Holtz

Demo 46-02 Parallel Plate Capacitor

Demo 46-03 Parallel Plate Capacitor Dielectrics

Demo 46-04 Rotary Capacitor

Demo 46-05 Battery and Separable Capacitor

Demo 46-06 Exploding Capacitor

Demo 46-07 Force on a Dielectric

Demo 46-08 Dissectible Capacitor

Demo 46-09 Grounded Leyden Jar

19.6 Biomedical Applications of Electric Potential Differences

19.7 Concepts & Calculations

Chapter 20 Electric Circuits

20.1 Electromotive Force and Current

Demo 45-02 Battery Effect

20.2 Ohm's Law

Demo 42-02 Ohm's Law

Demo 42-05 Electron Motion Model

Demo 43-01 Voltage Drop Along Wire

20.3 Resistance and Resistivity

Demo 42-01 Resistance Wires

Demo 42-0320 Heated Wire

Demo 42-04 Cooled Wire

Demo 38-01 Thermistor

Demo 44-01 Neon Bulb Resistivity

Demo 44-02 Carbon and Tungsten Lamps

Demo 45-01 Conductivity of Solutions

Demo 44-03 Diode

Demo 44-04 Rectifier Circuit

Demo 44-05 Transistor Amplifier

20.4 Electric Power

Demo 43-06 I²R Losses

Demo 43-07 Hot Dog Frying

Demo 43-05 Voltage Drops in House Wires

20.5 Alternating Current

Demo 51-05 AC/DC Generator

Demo 50-07 AC/DC Magnetic Contrast

20.6 Series Wiring

Demo 42-06 Series/Parallel Resistors

Demo 42-07 Series/Parallel Light Bulbs

Demo 43-01 Voltage Drop Along Wire

20.7 Parallel Wiring

Demo 42-06 Series/Parallel Resistors

Demo 42-07 Series/Parallel Light Bulbs

20.8 Circuits Wired Partially in Series and Partially in Parallel

Demo 43-05 Voltage Drops in House Wires

20.9 Internal Resistance

Demo 43-03 Internal Resistance of Batteries

20.10 Kirchoff's Rules

Demo 42-10 Conservation of Current

Demo 43-02 Sum of IR Drops

Demo 43-01 Voltage Drop Along Wire

20.11 The Measurement of Current and Voltage

Demo 42-09 Galvanometer as Voltmeter and Ammeter

Demo 43-04 Loading by a Voltmeter

Demo 42-08 Wheatstone Bridge

20.12 Capacitors in Series and Parallel

Demo 46-10 Series/Parallel Capacitors

20.13 RC Circuits

Demo 46-11 RC Charging Curve

Demo 46-12 Relaxation Oscillator

20.14 Safety and the Physiological Effects of Current

Demo 46-06 Exploding Capacitor

20.15 Concepts & Calculations

Chapter 21 Magnetic Forces and Magnetic Fields

21.1 Magnetic Fields

Demo 47-01 Magnetic Attraction/Repulsion Demo 47-04 Magnetic Fields Around Bar Magnets Demo 47-02 Lodestone Demo 47-03 Dip Needle Demo 47-05 Broken Magnet

21.2 The Force That a Magnetic Field Exerts on a Moving Charge

21.3 The Motion of a Charged Particle in a Magnetic Field

Demo 50-03 Deflected Electron Beam
Demo 50-04 Fine Beam Tube
Demo 54-01 Inductance Spark
Demo 54-02 Inductor with Lamp on AC
Demo 54-03 Lamps in Parallel with Solenoid
Demo 50-06 Ion Motor

21.4 The Mass Spectrometer

21.5 The Force on a Current in a Magnetic Field

Demo 50-01 Jumping Wire Demo 50-05 Barlow's Wheel Demo 50-10 Hall Effect Demo 50-07 AC/DC Magnetic Contrast

21.6 The Torque on a Current-Carrying Coil

Demo 50-02 Ampere's Frame Demo 50-08 D'Arsonval Meter Demo 50-09 DC Motor

21.7 Magnetic Fields Produced by Currents

Demo 48-01 Right-Hand Rule
Demo 48-02 Oersted's Needle
Demo 48-03 Magnetic Fields Around Currents
Demo 48-04 Solenoid Bar Magnet
Demo 48-05 Large Electromagnet
Demo 48-06 Electromagnet with 1.5-V Battery
Demo 48-07 Pinch Wires
Demo 48-08 Biot-Savart Law
Demo 47-06 Lowest Energy Configuration

21.8 Ampere's Law

21.9 Magnetic Materials

Demo 49-01 Magnetizing Iron by Contact

Demo 49-02 Magnetic Domain Model

Demo 49-03 Magnetizing Iron

Demo 49-04 Demagnetizing Iron by Hammering

Demo 49-05 Barkhausen Effect

Demo 49-06 Magnetic Shielding

Demo 49-07 Permalloy in Earth's Field

Demo 49-08 Paramagnetism and Diamagnetism

Demo 49-09 Dysprosium in Liquid Nitrogen

Demo 49-10 Curie Nickel

Demo 49-11 Curie Temperature Wheel

21.10 Concepts & Calculations

Chapter 22 Electromagnetic Induction

22.1 Induced EMF and Induced Current

Demo 51-01 Wire and Magnet

Demo 51-02 10/20/40 Coils with Magnet

Demo 51-04 Faraday Disc

22.2 Motional EMF

Demo 52-01 Eddy Current Pendulum

Demo 52-02 Arago's Disc

Demo 52-03 Eddy Current Tubes

22.3 Magnetic Flux

Demo 51-03 Earth Coil

22.4 Faraday's Law of Electromagnetic Induction

Demo 52-04 Electromagnetic Can Breaker

22.5 Lenz's Law

Demo 51-09 Faraday Repulsion Coil Demo 51-06 Current-Coupled Pendula Demo 51-08 Thomson's Flying Ring

22.6 Applications of Electromagnetic Induction to the Reproduction of Sound

22.7 The Electric Generator

Demo 51-05 AC/DC Generator

22.8 Mutual Inductance and Self-Inductance

Demo 51-10 Two Coils Demo 51-11 Induction Coil

Demo of 11 induction con

Demo 51-07 Inductive Coil with Lamp

22.9 Transformers

Demo 51-12 Vertical Primary and Secondary Coils

Demo 51-13 Transformers

Demo 51-11 Induction Coil Demo 53-01 Hysteresis Curve Demo 53-02 Hysteresis Waste Heat

22.10 Concepts & Calculations

Chapter 23 Alternating Current Circuits

23.1 Capacitors and Capacitive Reactance

23.2 Inductors and Inductive Reactance

Demo 51-07 Inductive Coil with Lamp

23.3 Circuits Containing Resistance, Capacitance, and Inductance

Demo 55-02 Damped LRC Oscillation

23.4 Resonance in Electric Circuits

Demo 55-01 Driven LRC Circuit Demo 55-03 Tesla Coil

23.5 Semiconductor Devices

Demo 44-03 Diode

Demo 44-04 Rectifier Circuit

Demo 44-05 Transistor Amplifier

Demo 66-04 Solar Cells

Demo 37-01 Superconductors

Demo 38-02 Thermoelectric Magnet

Demo 38-04Thermocouple

Demo 37-02 Crystal Models

Demo 37-03 Faults in Crystal

23.6 Concepts & Calculations

Chapter 24 Electromagnetic Waves

24.1 The Nature of Electromagnetic Waves

Demo 56-01 Light in a Vacuum

Demo 56-09 Microwave Standing Waves

24.2 The Electromagnetic Spectrum

Demo 56-01 Light in a Vacuum

Demo 63-01 Infrared in Spectrum

Demo 56-05 Radio Waves

Demo 56-08 Microwave Unit

Demo 56-07 Lecher Wires

Demo 63-02 Colors in Spectral Light

Demo 63-03 Rainbow Disc

Demo 63-04 Newton's Color Disc

Demo 63-05 Additive Color Mixing

24.3 The Speed of Light

Demo 56-01 Light in a Vacuum

24.4 The Energy Carried by Electromagnetic Waves

Demo 56-04 Inverse Square Law Demo 56-10 Microwave Absorption

24.5 The Doppler Effect and Electromagnetic Waves

24.6 Polarization

Demo 64-01 Polaroid Sheets Crossed and Uncrossed

Demo 64-02 Polaroids Cut at 45 Degrees

Demo 64-03 Rotation by Polarizing Filter

Demo 64-04 Microwave Polarization

Demo 64-07 Polarization by Scattering

Demo 64-08 Artificial Sunset

Demo 65-01 Optical Activity in Cellophane Tape

Demo 65-02 Polarized Lion

Demo 65-03 Optical Activity in Corn Syrup

Demo 65-04 Polage

Demo 65-05 Photoelastic Sress Figures

Demo 65-06 Barbershop Sugar Tube

Demo 65-07 Quarter Wave Plate

Demo 65-08 Double Refraction in Calcite

Demo 65-09 Liquid Crystal Sheets

24.7 Concepts & Calculations

Chapter 25 The Reflection of Light: Mirrors

25.1 Wave Fronts and Rays

25.2 `The Reflection of Light

Demo 56-02 Straight Line Propagation

Demo 57-03 Angles of Incidence and Reflection

Demo 57-02 Diffuse/Specular Reflection

Demo 57-07 Corner Reflector

Demo 57-01 Microwave Reflection

25.3 The Formation of Images by a Plane Mirror

Demo 57-04 Location of Image

Demo 57-05 Parity Reversal in a Mirror

Demo 57-06 Hinged Mirrors

Demo 57-07 Corner Reflector

Demo 57-08 Barbershop Mirrors

Demo 57-09 Mirror Box

25.4 Spherical Mirrors

Demo 58-01 Concave and Convex Mirrors Demo 58-02 Spherical Aberration in a Mirror Demo 58-03 Energy at a Focal Point Demo 58-04 Heat Focusing Demo 58-05 Large Concave Mirror

- 25.5 The Formation of Images by Spherical Mirrors
- 25.6 The Mirror Equation and the Magnification Equation
- 25.7 Concepts & Calculations

Chapter 26 The Refraction of Light: Lenses and Optical Instruments

26.1 The Index of Refraction

Demo 21-12 Refraction of Water Waves

26.2 Snell's Law and the Refraction of Light

Demo 59-01 Refraction/Reflection from Plastic Block Demo 59-02 Small Refraction Tank Demo 59-03 Acrylic/Lead Glass Refraction Demo 59-05 Disappearing Eye Dropper

26.3 Total Internal Reflection

Demo 59-06 Critical Angle/Total Internal Reflection Demo 59-07 Silver Soot Ball Demo 59-08 Light Pipes Demo 59-09 Optical Path in Fibers Demo 59-10 Laser Waterfall

26.4 Polarization and the Reflection and Refraction of Light

Demo 64-05 Polarization by Reflection Demo 64-06 Polarization by Double Reflection

26.5 The Dispersion of Light: Prisms and Rainbows

Demo 59-04 Three Different Prisms

26.6 Lenses

26.7 The Formation of Images by Lenses

Demo 60-03 Ray Tracing with Lenses Demo 60-02 Lens Magnification Demo 60-04 Fresnel Lens Demo 60-05 Fillable Air Lenses Demo 60-01 Real Image Formation Demo 56-03 Pinhole Camera

26.8 The Thin-Lens Equation and the Magnification Equation

Demo 60-02 Lens Magnification

				4 .
26.9	Lenses	ın ('^	mhin	ation
20.3	LCIIOCO		,,,,,,,,,,,,	auvii

26.10 The Human Eye

Demo 56-06 Impossible Triangle

26.11 Angular Magnification and the Magnifying Glass

26.12 The Compound Microscope

26.13 The Telescope

26.14 Lens Aberrations

Demo 60-06 Spherical Aberration Demo 60-07 Chromatic Aberration Demo 60-08 Astigmatism Demo 60-09 Off Axis Distortion

26.15 Concepts & Calculations

Chapter 27 Interference and the Wave Nature of Light

27.1 The Principle of Linear Superposition

27.2 Young's Double-Slit Experiment

Demo 62-02 Double Slit Interference Demo 62-01 Microwave Double Slit Interference

27.3 Thin-Film Interference

Demo 62-05 Glass Plates in Sodium Light Demo 62-06 Newton's Rings Demo 62-07 Interference Filters Demo 62-08 Pohl's Mica Sheet Demo 62-09 Soap Film Interference

27.4 The Michelson Interferometer

Demo 62-11 Michelson Interferometer with White Light Demo 62-10 Microwave Interferometer

27.5 Diffraction

Demo 61-01 Microwave Diffraction
Demo 61-02 Single Slit Diffraction
Demo 61-03 Single Slit Diffraction (Cornell Slides)
Demo 61-04 Thin Wire Diffraction
Demo 61-05 Poisson's Bright Spot
Demo 61-06 Shadow of Needle
Demo 61-07 Pin Hole Diffraction
Demo 61-08 Knife Edge Diffraction

27.7	The Diffraction Grating Demo 62-03 Multiple Slit Interference Demo 62-04 Interference Gratings
27.8	Compact Discs, Digital Video Discs, and the Use of Interference Demo 62-12 Holograms
27.9	X-Ray Diffraction
27.1	0 Concepts & Calculations
Chapter 2	Special Relativity
28.1	Events and Inertial Reference Frames
28.2	The Postulates of Special Relativity
28.3	The Relativity of Time: Time Dilation
28.4	The Relativity of Length: Length Contraction
28.5	Relativistic Momentum
28.6	The Equivalence of Mass and Energy
28.7	The Relativistic Addition of Velocities
28.8	Concepts & Calculations
Chapter 2	Particles and Waves
29.1	The Wave-Particle Duality Demo 66-05 Microwave Barrier Penetration
29.2	Blackbody Radiation and Planck's Constant Demo 66-01 Radiation Spectrum of a Hot Object Demo 66-08 Bichsel Boxes
29.3	Photons and the Photoelectric Effect Demo 66-02 Photoelectric Effect in Zinc Demo 66-03 X-ray Ionization Demo 66-04 Solar Cells Demo 67-09 Triboluminescence Demo 67-10 Luminescence

27.6 Resolving Power

Demo 61-09 Resolving Power

Demo 67-08 Jacob's Ladder

29.4	The Momentum of a Photon and the Compton	Effect
29.5	The De Broglie Wavelength and the Wave Nat Demo 66-06 Electron Diffraction	ure of Matter
29.6	The Heisenberg Uncertainty Principle	
29.7	Concepts & Calculations	
Chapter 30	The Nature of the Atom	
30.1	Rutherford Scattering and the Nuclear Atom Demo 68-01 Rutherford Scattering Demo 66-07 Millikan Oil Drop Demo 67-03 Thermionic Emission Demo 67-04 Electron Discharge T Demo 67-05 Discharge Tube and	ube with Cross
30.2	Demo 67-01 Emission Spectra Demo 67-02 Spectral Absorption I Demo 67-07 Flame Salts Demo 67-11 Fluorescence Demo 67-06 Plasma Tube	by Sodium Vapor
30.3	The Bohr Model of the Hydrogen Spectrum Demo 67-12 Franck-Hertz Effect	
30.4	De Broglie's Explanation of Bohr's Assumption Angular Momentum	on about
30.5	The Quantum Mechanical Picture of the Hydro Demo 67-12 Franck-Hertz Effect	ogen Atom
30.6	The Pauli Exclusion Principle and the Periodic Demo 67-12 Franck-Hertz Effect	c Table of the Elements
30.7	X-Rays Demo 66-03 X-ray Ionization	
30.8	The Laser	
30.9	Medical Applications of the Laser	

30.11	Concepts & Calculations
Chapter 31	Nuclear Physics and Radioactivity
31.1	Nuclear Structure
31.2	The Strong Nuclear Force and the Stability of the Nucleus
31.3	The Mass Defect of the Nucleus and Nuclear Binding Energy
31.4	Radioactivity Demo 68-02 Nuclear Shielding Demo 68-05 Cosmic Rays
31.5	The Neutrino
31.6	Radioactive Decay and Activity Demo 68-02 Nuclear Shielding Demo 68-04 Half-Life
31.7	Radioactive Dating Demo 68-04 Half-Life
31.8	Radioactive Decay Series
31.9	Radiation Detectors Demo 68-02 Nuclear Shielding Demo 68-05 Cosmic Rays
31.10	Concepts & Calculations
Chapter 32	Ionizing Radiation, Nuclear Energy, and Elementary Particles
32.1	Biological Effects of Ionizing Radiation
32.2	Induced Nuclear Reactions
32.3	Nuclear Fission Demo 68-03 Mousetrap Chain Reaction
32.4	Nuclear Reactors Demo 68-03 Mousetrap Chain Reaction
32.5	Nuclear Fusion

Demo 62-12 Holograms

30.10 Holography

32.6

Elementary Particles
Demo 68-05 Cosmic Rays

32.7 Cosmology

Demo 68-05 Cosmic Rays

32.8 **Concepts & Calculations**